TT - HO (G)

Herzlichen Glückwunsch zum Erwerb der Digital LED Platine! Diese Lichtplatine bietet eine Fülle neuer Anwendungsmöglichkeiten für den Modellbahner.

Flackerfreies digital fernsteuerbares Licht zu einem attraktiven Preis. Analogbetrieb möglich, das Verhalten der Lichtgruppen ist einstellbar. Die teilbare Platine hat 6 LED Gruppen mit jeweils 3 LEDs als Lichtquelle.

Auf der Platine befindet sich ein Digitaldecoder, der die einzelnen Lichtgruppen steuert. Weiters gibt es 2 klassische Decoderausgänge. Diese können für die Ansteuerung der Spitzenlichter in Steuerwagen benutzt werden.

Die Verkabelung und Montage ist denkbar einfach. Die zwei Versorgungsleitungen ans Gleis, das war's. Die Platine wird mittels doppelseitigem Klebeband im Wagon befestigt.

Die LEDs können seitlich verschoben werden, haben mehrfache Montage Möglichkeiten, die das genaue Positionieren z.B.: für Abteilwagen ermöglichen.

Für kurze Wagen, oder Modelle in kleinen Maßstäben, kann die Platine zweifach gekürzt werden. Die ausgereifte Elektronik sorgt dafür, dass die Helligkeit der LEDs unabhängig von ihrer Anzahl, Farbe oder der Schienenspannung immer konstant gleich bleibt.

Einfache Konfiguration ohne langem Grübeln. Durch Setzen von CV werden die Funktionstasten den Lichtfunktionen zugeordnet. Eine Tabelle in dieser darüber Anleitung gibt Auskunft. Für erfahrene Anwender aibt es selbstverständlich weiterhin alle Möglichkeiten des NMRA Function Mappings.

Der auf der Platine vorhandene Digitaldecoder bietet Möglichkeiten der Lichtsteuerung die, bisher nur mit recht hohem Aufwand realisiert werden konnten. Es gibt blaues Nachtlicht, Simulation des Startflackerns von Leuchtstofflampen, langsames Auf- und Abblenden der Beleuchtung oder das Einstellen der Helligkeit. Der Decoder kann auch zeitlich

Congratulations for acquiring the Digital LED board. This board offers a bunch of new applications.

Flicker free digitally remote controlled light with an attractive price tag. This board also allows analog operation. Even in analog mode this board allows to set various operation modes. The adjustable board carries 6 LED groups with 3 LEDs each.

puts.

There is a digital decoder integrated which controls the various features. Additionally there are 2 standard out-They may be used to power head lights of contol cars or any other load.

Mounting and electrical installation is extremely easy. Just hook up the 2 power lines to the track and glue the board with double sided tape on the roof of a passenger car.

> Many LEDs offer variable position to adjust for precise light position in passenger cars.

For short cars or smaller scales it is possible to cut the board. The special electronic circuit detects the changed situation and adjusts the current to keep the LEDs with constant brightness.

The "Quick Mapping" feature offers simple configuration of function key assignment. Simple program one number and the Functionmapping is set for you. For experts the standard NMRA function mapping is available too.

The decoder which is integral part of the board, offers light features which are hard to implement with classic function decoders. For example switching to blue night light, soft start and of LEDs, or simulation of start flickering at gas lamps. It is also possible to dimm some of the LEDs if you require this.

The decoder may run a light procedure for you by automatically changing the Light situation. This simulates passengers which change

gesteuerte zufällig LEDs abschalten. Das simuliert Passagiere, die im Wagen Licht auf- und abdrehen und sorgt für eine weitere Belebung des Bahnbetriebs.

Technische Daten

Breite	1cm
Länge	9cm, 19,5cm 30cm
Spannung	8-25V
Strom (LEDs)	5 bis 45mA
Strom Zusatzausgän	ge bis zu 150mA
Pufferkondensator.	(extern)

Varianten

Die Digital LED Varianten unterscheiden sich in der Bestückung der LED Farben.

weiß/gelb/blau	Lichtfarbe und Nachtlicht
weiß/gelb	Anpassung der Lichtfarbe
weiß/blau	Normal- und Nachtlicht
gelb/blau	Normal- und Nachtlicht
weiß	große Lichtmenge
gelb	große Lichtmenge

Analog Betrieb (ab V40)

Diese Digital LED Platine kann auch mit Analogspannung DC oder AC betrieben werden. Wenn ausreichend Spannung angelegt wird, leuchten die LEDs gleichmäßig hell, auch wenn die Spannung weiter erhöht wird. Die Funktion ist für einen Vitrinenbetrieb ausgelegt. Für einen klassischen Analogspannungsbetrieb ist das verwendete Schaltungskonzept nicht geeignet.

Die Minimalspannung ist etwa 11V bei gelben LEDs und 14V bei weißen. Wurde die Platine gekürzt, sinkt die Minimalspannung um etwa 2V pro Segment bei gelben LEDS bzw. 3V bei weißen.

Das Verhalten der Ausgänge im Analogbetrieb kann mittels einer Digitalzentrale über CV13 programmiert werden. Zum Betrieb reicht dann Analogspannung.

the light in the car. This generates more individuality inside the cars.

Specs

Width	1 cm
Length	9cm, 19,5cm, 30cm
Power Supply	8—25V
Current 8ledS9	5 to 45 mA
Supplemental Outputs	up to 150 mA
Puffer Capacitor	(external)

Variants

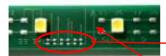
The board is offered in variants. The difference is only the color of LEDs being used

white/yellow/blue light	nt color and light light
white/yellow	.adjustable light color
white/blue	standard – night light
yellow/blue	standard – night light
white	bright light
yellow	bright light

Analog Power (since V40)

The Digital LED board may be powered with AC or DC power as well. As soon as enough voltage is available the LEDs start shining. Raising voltage does not change brightness, the board stabilized that. The function is intended to be used for displays. For classic analog operation the circuit design is not suitable.

Minimum voltage is about 11V for yellow LEDs or 14V for white ones. Cutting the board lowers the minimum voltage by 2V for yellow and 3V for white LEDs per segment.


You may shape the analog operation by programming the board via a digital command control on CV13. For operation analog power is sufficient.

Kürzen der Platine

Einfache Version (Nur V1 Platinen)

Die Lichtplatine kann auf Basis Ihres flexiblen automatisch den Strom anpassenden Schaltungskonzepts gekürzt werden. Die Stellen sind mit einem Doppelpfeil markiert

Lötpads

Schneidmarkierung

Links davon befinden sich Lötpads, die verbunden werden müssen, um die Stromkreisunterbrechung zu schließen.

Erweiteret Variante

Die Platine kann an beliebiger Stelle ab Positi-

on A abgeschnitten werden. Um die Schaltkreise zu schließen, einfach die Platine umdrehen, die Leiterbahnen an der Schnittkannte blank schaben und alle mit einem Stück Draht verbinden. Diese Drahtbrücke zusätzlich mit der nächsten LED verbinden. Dort fehlt leider der durchgehende (+) Pol für die LEDs. Ab Platinenvarie

Cutting the board

Simple version (only V1 boards)

The board may be cut on two positions clearly marked with double arrows. The flexible circuit design automatically adjusts the power for the changed situation.

Cutting marks

Left of the cutting marker there are soldering pads. They need to be closed to close the electrical circuit.

Enhanced version

The board may be cut anywhere right from

position A. To close the beaked circuits clean the lines at backside right on the edge. Use a wire to short all lines. You need to run the wire additionally to the last LED side to connect to (+) level. Board version 4 does not require that connection to the front side.

Position der LEDs

Verschieben der LFDs

Deutlich erkennt man, dass viele LED-Positionen mehrfach angeordnet sind. Das ermöglicht die LED genau an die Wagenverhältnisse anzupassen. Siehe Seite 8.

Stilllegen von LEDs

Nicht benötigte LEDs können abgeschaltet bleiben. Das normgerechte "Funktion Mapping" bietet hier viele Einstellmöglichkeiten. Einzelne LEDs können auch überbrückt werden; die Elektronik sorgt automatisch für die notwendige Stromanpassung.

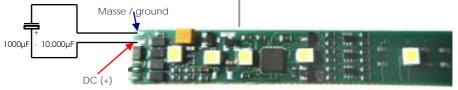
Position of LFDs

Moving the LEDs

It is easy to identify many LEDs have multiple mounting positions. This allows the user to move the LED around to adjust to the individual car requirements. See page 8 for more Info.

Disabling a LED

Unnecessary LEDs may be left turned off. The NMRA function Mapping allows flexible reconfiguration. If this is not enough it is possible to short a LED. The circuit detects this and adjusts automatically.

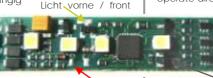


Energie - Pufferung

Auf der Platine befinden sich Lötpads, um ein Pufferkondensator anzuschließen. Dieser kann kurze Stromunterbrechungen überbrücken, um Flackern zu verhindern. Je größer der Kondensator gewählt wird, um so länger die Zeit die er Strom liefern kann. Achten Sie beim Elektrolytkondensator auf ausreichende Spannungsfestigkeit (H0>=20V LGB>=35V)

Buffer

The board as 2 soldering pads which allow connecting a buffer capacitor. It is used to buffer energy which is used to bridge power interruptions. The bigger the value of the installed capacitor the longer is the bridging time. It is important to use a capacitor with correct voltage, should be at least track voltage. Recommendation: H0 > 20V. LGB >=35V


Der Pufferkondensator sollte so groß wie möglich gewählt werden. Werte ab 1000µF haben sich als bereits ausreichend erwiesen. Die Platine hat bereits eine Ladeschaltung integriert die den Ladestrom begrenzt. Das vermeidet eine Überlastung der zentrale beim Einschalten der Anlage.

The buffer capacitor should be as big as possible. Values starting at 1000µF work fine. The board carries a current limiting circuit. This avoids overloading the layout when you power up.

Zusatzausgänge

Es stehen 2 verstärkte Zusatzausgänge zur Verfügung. Eine Anwendung dafür sind die Stirnlampen von Steuerwagen, die Ausgänge

sind richtungsabhängig über F0 zu schalten. Weiters kann man sie zur Ansteuerung von Kupplungen (Impulsbetrieb) verwenden.

Licht hinten / rear light

Function Output

There are 2additional amplified outputs available. A typical application for this are headlights. The 2 outputs are controlled via F0 and operate direction dependent. Another use is to

power decouplers. The board supports pulse operation.

Only the 2 function outputs allow con-Discrepance of the contraction o

necting external load. The LED circuits must not be used for this. Attention: the board can not provide high current! Do not use high current bulbs there!

The default assignment for function outputs is F0 (CV33=1 and CV24=2). It is possible to move the assignment to F1-F3. Use the value of 1=forward, 2=backward, 3 for both outputs un CV35-37. It is not possible to assign the function outputs to high function keys like F4 upwards.

Nur diese beiden Ausgänge erlauben das Anschließen von externen Verbrauchern. Achtung: die Platine kann keine hohen Ströme liefern! Bitte leine großen Lampen anschließen!

Die Funktionsausgänge sind standardmäßig der Taste F0 zugeordnet. (CV33=1 und CV34=2) Man kann mit den Werten 1=vorne 2=hinten oder 3=beide gleichzeitig die Funktionstasten F1 F3 über die CV35,36,37 ansprechen. Höhere Funktionstasten, F4 aufwärts, können nicht den Funktionsausgängen zugeordnet werden.

Helligkeit

Die Helligkeit der Beleuchtung wird durch das Schaltungskonzept spannungsunabhängig konstant gehalten. Zum Abdunkeln können die LEDs gedimmt werden. Das ändert die Helligkeit beeinflusst aber nicht die Leuchtfarbe, besonders wichtig für weiße LEDs.

Einstellungs-Tipps

Um alle Waggons eines Zuges schnell und einfach schalten zu können, legen Sie alle Decoder auf die gleiche Adresse.

Welche CV steuert welche Taste?

Jede CV steuert die 8 Ausgänge. Die ersten beiden sind für die Zusatzausgänge zugeordnet, danach folgen die 6 LED Gruppen.

Brightness

The brightness of the LEDs is stabilized independent of the track voltage. You may lower the brightness via special dimming CVs. This works similar to a light dimmer. It reduces the brightness but does not change the color of the LED. Especially important for white LEDs.

Configuration Advices

To access all cars in a train quick and easy program all cars in a train to the same address.

CV	Taste / key
33/34	FO
35	F1
36	F2
37	F3
38	F4
39	F5

Which CV controls which key?

Each CV controls one of the 8 possible outputs. The lower two are responsible for the function outputs. The rest controls the 6 LED groups.

Alle LEDs sollen unter einer Taste liegen

Programmieren Sie 252 in die entsprechende CV. Das bedeutet alle 6 LED Gruppen werden gleichzeitig aktiviert.

LED 1,3,5 sollen auf F3 und 2,4,6 auf F4 liegen

CV37=84 und CV38=168

Jede Gruppe auf einer eigenen Taste

CV35=4, CV36=8, CV37=16, CV38=32, CV39=64, CV40=128

Helligkeit soll verringert werden

CV54 definiert die Helligkeit wobei 1 sehr Dunkel und 255 volle Helligkeit bedeutet.

CV57 ist binär codiert, selektiert einen oder mehrere der 8 möglichen Ausgänge.

All LEDs should be under one function key

Just program the value 252 into the corresponding CV. This means all 6 LED groups get activated simultaneously.

LED 1,3,5 should be F3 and group 2,4,6 = F4

CV37=84 and CV38=168

Each group on a single key

CV35=4, CV36=8, CV37=16, CV38=32, CV39=64, CV40=128

Brightness should be reduced

CV54 sets the brightness where 1 is extremely dark and 255 is full power

CV57 is binary orientated and selects one or more of the 8 possible output.

Output	GR6	GR5	GR4	GR3	GR2	GE1	Lh	Lv	Summe
Zahl	128	64	32	16	8	4	2	1	
Wert	128 ▼	64 ▼	32 ▼	16 ♥	8	4 ▼			252

Die obige Tabelle zeigt das Berechnungsprinzip. Addieren Sie die angegebenen Zahlen der zu dimmenden Ausgänge und schreiben Sie das Ergebnis in die CV57 The table above shows the principle. Just add the numbers of each output you want to dim together and program the result into CV57.

Das Beispiel in der Tabelle dimmt alle LED Ausgänge, lässt die Funktionsausgänge aber unberührt.

Helligkeit der Funktionsausgänge

Ist über CV54 und CV57 einzustellen, siehe vorigen Absatz. Es gibt keine Möglichkeit die Funktionsausgänge getrennt von den LEDs zu dimmen. Als Alternative kann man Vorwiderstände einsetzen.

Kupplungsansteuerung:

An den Funktionsausgängen werden Entkuppler angeschlossen. Diese dürfen oft nur kurzzeitig angesteuert werden. Damit die Spulen nicht durchbrennen, wenn man vergisst, die Funktion rechzeitig abzuschalten.

CV56 definiert den Einschaltimpuls in 100ms Schritten. Für ein Aktivieren von 3 Sekunden programmiert man CV56=30.

CV58 definiert, auf welche Ausgänge der Kupplermechanismus wirken soll. Für vorne und hinten setzt man CV58=3. Der Rest der Bits in CV58 wird für das Leuchtstofflampenflackern benutzt.

Standardmäßig sind die Funktionsausgänge auf die Taste F0 verbunden. Das erlaubt den Betrieb der Entkuppler richtungsabhängig zu gestalten. Um eine andere Taste mit den Funktionsausgängen zu belegen schreibt man den betragen in die entsprechende CV, siehe die Tabelle am Beginn dieses Abschnitts.

Fragen & Antworten

Allgemeines

Prüfen Sie alle Verbindungen zur Platine. Sorgen Sie dafür, dass keine Teile der Platine andere leitende Materialien im Wagen berühren um, Kurzschlüssen vorzubeugen.

Kein Licht aber Spannung ist vorhanden

Prüfen Sie das durch Aktivieren aller Funktionstasten. Haben Sie die korrekte Adresse eingestellt. Notfalls machen Sie einen Decoder Reset: CV1=0 Decoder Reset.

Das Licht flackert

Die Spannung ist zu gering, speziell bei Analogbetrieb, hier kann der Kondensator die Unterbrechungen nicht ausreichend überbrücken. Primär für sauberen Stromabgriff sorgen, dann

The example in the table above dims all LEDs but leaved the function outputs untouched.

Brightness of function outputs

Primarily done via CV54 and CV57, as discussed in the previous chapter. It is not possible to dimm the function outputs independent from the LEDs. Use a resistor as an alternativ for this.

decoupler activation

Decouplers get connected to the function outputs. Most decouplers require short term activation to avoid overloading the coils. It is necessary to deactivate the output in time.

CV56 defines the power on impulse in 100ms steps. To activate the output for 3 seconds write CV56=30.

CV51 defines which output should have the coupler mechanism enabled. For front and rear set CV58=3. The rest of the CV58 bits is used to control the fluorescent start up functionality.

The default maps the function outputs behind F0. This would allow to activate the coupler direction dependent. To map the coupler to another function key write the value 3 into the desired function CV, see table at the beginning of this section.

O & A

Generic

Generally check all soldering connections after installing the board. Please double check that the components do not cause any shortages to any circuit tracks underneath them.

No light but power is there

Recheck by activating all function keys. Are you using the correct car address? If that fails do a CV1=0 decoder reset.

Light is flickering

If the voltage is too low, especially in analog mode, the capacitor can not bridge the gaps. Primary try to check power pick up. Then raise the voltage or use a bigger buffer capacitor.

Spannung erhöhen, wenn möglich, oder Kondensator vergrößern.

Licht leuchtet weiter nach Abschalten der Spannung

Das ist gewollt: Folge des Flackerschutzes.

Kann man die Helligkeit erhöhen?

Nein, die Schaltung sorgt für konstanten Strom unabhängig von der Betriebsspannung.

Kann man die Helligkeit reduzieren?

Ja! Dazu gibt es die Dimmfunktion CV54/57

Mit F4-F6 ist nur ein Teil der LEDs zu erreichen

Das ist eine Resultat aus der NMRA Funktionsdefinition, daher nicht änderbar.

Nach dem Umlöten einer LED leuchtet diese nur noch schwach

Vermutlich wurde die LED zu lange erhitzt beim Umlöten. Ersetzen Sie die LED durch eine neue, ev. von einem abgelängten Stück entnehmen.

Ich habe die Platine gekürzt: kein Licht mehr!

Sie müssen die gepaarten Lötpads am Ende der Platine schließen

Kann man die Platine, mit dem abgetrennten Stück einer anderen Lichtplatine verlängern?

Nein das ist nicht möglich. Die Helligkeitsstabilisierung kann damit nicht umgehen.

Kann man auch abseits der markierten Stellen die Platine kürzen?

Ja, man muss aber dafür sorgen, dass die Stromkreise wieder geschlossen werden. Dazu kann man Drahtbrücken von den LED-Pads verlegen. Durch die automatische Helligkeitsregulierung ist auch ein gemischter Betrieb mit unterschiedlich vielen LEDs unterstützt. Dies ist nur erfahrenen Anwendern zu empfehlen.

Einige LEDs arbeiten andere nicht

Überprüfen Sie die CV Werte der Tastenzuordnung. Führen Sie einen Reset aus, um die Standardwerte zu laden.

Falls die Platine gekürzt wurde, überprüfen sie die Lötstellen.

Wenn Sie LEDs verschoben haben, prüfen Sie die Orientierung und die Lötstellen

Light stays on for a short while after power off

This is intended function, actually the result of the flicker protection circuit.

Is it possible to increase brightness?

No, the board circuit stabilizes the current through the LEDs

Is it possible to reduce brightness?

Yes! Just use the dimming CVs

Why are not all LEDs available via F4-F6?

This is a consequence of the NMRA function mapping. There is no possibility to change that.

After moving a LED it shines less bright, what can I do?

A possible reason is that the LED was heated up too long during the soldering process. Replace the LED, eventually from a removed part.

I've cut the board, all LEDs are off now.

You need to close the circuit via the 12 small soldering pads at the edge of the board.

Is it possible to connect extend a board with the part cut off from another one?

No that is not possible. The brightness control is not able to handle this.

Is it possible to cut at other places than the marked ones?

Yes, but it is harder to close the circuit. To do that the empty LED soldering pads may be used. The automatic brightness control stabilizes the current through the LEDs. It is also supported to have a mixed number of LEDs on individual function keys. This is only recommended for experienced electronics engineers.

Some LEDs are working but some fail

Check the CV values of the function key table. Do a reset to load the default values.

Recheck the soldering pads if you have cut the board

Reset des Decoders

Um den Decoder in den Ursprungszustand zu bringen, kann man durch das Programmieren auf Adresse 0 (CV1=0) einen Reset ausführen. Manche Zentralen verhindern das Setzen von Adresse=0 oder geben einen Fehler aus der Reset funktioniert üblicherweise dennoch.

Die Standardeinstellungen sind:

- Alle Sondereinstellungen für Licht und Kupplung abgeschaltet
- Maximale Helligkeit
- F0 f
 ür Funktionsausg
 änge
- F1- alle LEDs einschalten
- F2 F7 f
 ür die LED-Gruppen 1-6

LEDs verschieben

Die LEDs können mit üblichen Elektronik-Lötkolben gelötet werden. Es ist darauf zu achten, dass nicht zu lange erhitzt wird. Das beschädigt die LEDs.

Fügen Sie vor dem Löten weiteres Lötzinn zu, das erleichtert das Auslöten. Man kann auch unter die LEDs vorsichtig ein Stück dickeres Papier oder einen Zahnstocher schieben. So lassen sich die LEDs leichter auslöten.

Viele LEDs können seitlich, entlang der Längsachse, verschoben werden, jeweils 3 sind in einer Gruppe zusammengefasst.

Reset of the decoder

To reset the decoder back to the factory setting set the address of the Decoder to 0 (CV1=0). Not all central units allow setting the address to 0! Some stations issue an error message but execute the commend. In most cased the board will do the reset.

The default setup is:

- All special functions for light and function outputs is disabled
- Maximum brightness for the LEDs
- F0 assigned for function output
- F1- all LEDs turned on
- F1 F7 mapped to LED Group 1-6

Moving LEDs

The LEDs may be soldered with any common electronics soldering iron. Take care, the LEDs get damaged if they are heated up for longer time.

Add some additional solder before you unsolder the LED. This makes it simpler to open the soldering point. Eventually gently push a thicker piece of paper or a toothpick underneath the LED, before you start soldering.

Many LEDs can be moved sidewise. Each function has 3 LEDs chailed up over the board.

Gruppe	Position 1	Position 2	Position 3
1	-	9 10 11	35 36 37 38
2	-	12 13 14 15 16	39 40 41 42 43
3	-	17 18 19 20 21	44 45 46 47 48
4	A B 1 2	22 23 24 25 26	49 50 51 52 53
5	3 4 5 6	27 28 29 30 31	54 55 56 57 58
6	7 8	32 33 34	59 60 61

Die ersten 3 LED Positionen befinden sich im Bereich der Decoderelektronik und lassen sich nicht verschieben. Ein Kurzschließen dieser LEDs, um sie abzuschalten, ist aber möglich. The first 3 LED positions are in the area of the decoder electronics and do not have alternate positions.

Montage der Platine

Die Platine wird am einfachsten mittels doppelseitigem Klebeband am Waggondach montiert. Das Schaltungskonzept garantiert sehr geringe Wärmeentwicklung, daher sind Wärmeschäden, wie bei Glühlampen üblich, auszuschließen.

Für LGB Dächer sind Montageklammern erhältlich. Diese werden auf die vorhandenen Montagenippel im Wagendach geschraubt, die Platine wird dann eingeklipst.

Platinen Varianten

Es gibt mehrere Varianten der Platine. Die 2 Trennstellen waren für viele Anwender verwirrend. Alle Platinen kann man an beliebiger Stelle trennen, auch jene mit den Trennstellen.

Der Abschlußdraht muß bei den ersten Versionen an manchen Stellen nach vorne auf die Platinenvorderseite gezogen werden. Ab Version 4 ist das nicht mehr nötig, stört aber auch nicht.

Anwendungs-Beispiele

Lichtfarbe einstellen

Die Platine ist in mehreren LED Farbvarianten erhältlich, um unterschiedlichen Beleuchtungsanforderungen zu entsprechen.

Die Weiß/Gelb Anordnung erlaubt das individuelle Einstellen der Lichtfarbe.

CV35=84 (weiß) und CV36=168 (gelb) erlaubt über F1 und F2 die beiden Lichtfarben getrennt oder gleichzeitig einzuschalten.

In der Bestückungsvariante Weiß/Blau oder Gelb/Blau ermöglicht dies das Umschalten von Normallicht auf Schlafbeleuchtung. Ein möglicher Anwendungsfall sind Schlaf- oder Liegewagen.

In der Weiß/Gelben Bestückung kann man die Farbtemperatur auch gezielt stufenlos einstellen. Beispiel: alle LEDs auf F1 zu schalten (CV35=252). Über die Dimmfunktion wird eine Farbe etwas zurückgenommen um die Wirkung Richtung Weiß oder Gelb zu verschieben. Dazu

Mounting the board

The common way is to mount the board via double sided tape on the car roof. The circuit design guarantees very low heat development. This avoids heat damages as known from common bulbs.

For LGB modes special mounting clamps are available. The get screwed into the existing mounting holes in the LGB roofs. The light board in then inserted into the clamp which holds it in place.

Mounting the board

There are several board variants. The 2 cutting sections where removes from version 2 on to avoid confusion. All board versions allow flexible cutting at any location.

The closing connection needs to run on some sections to the front side as well. Even if it is not necessary it does not hurt to install it. Since version 4 that front connection may be left off.

Application notes

Set the light color

The board is available in various LED color configurations. This makes use of the advanced features of the integrated decoder.

The alternating white/yellow layout allows controlling the light color.

CV35=84 (white) and CV36=168 (yellow) gives access to both colors individually via F1 and F2.

The version with white/blue or yellow/blue may be used to simulate illumination between normal mode and sleeping light. Very useful for couchettes or sleeping cars.

The white/yellow version allows very fine control over the light color (temperature). For example: all lest should be controlled via F1 (CV35=252). The dimming function is used to reduce the light of one color, yellow or white. CV54 is used to reduce brightness (CV54=70).

setzt man die Dimmvariable CV54 herunter (CV54=70) und definiert über die Dimmaske (CV57) welche LEDs weniger hell leuchten solen. Mit CV57=84 wird die eine Farbe zurück genommen oder CV57=168 die andere. So kann man faktisch stufenlos von gelb bis zu hellem weiß die Beleuchtungsfarbe einstellen.

Leuchtstoffröhren Imitation

Das Einschalten von Leuchtstoffröhren beginnt oft mit einem Flackern. Das kann man mit dieser Platine simulieren.

Das Startflackern schaltet man mit CV58 die oberen 6 Bits. Für alle 6 Gruppen definiert man den Wert CV58=252. CV63 stellt die Zeitspanne des Flackerns ein.

Schließlich muss man noch definieren welche Taste zum Einschalten benutzt werden soll. Beispielsweise F2. So setzt man CV36(für F2) auf 252 (alle LED Gruppen).

Sobald man das Licht mittels F2 einschaltet beginnen die LEDs zufällig zu flackern und leuchten dann nach 5 Sekunden konstant.

Defekte Lampe

CV62 ermöglicht die Simulation einer defekten Leuchtstofflampe. Die einzelnen Bits 2-7 entsprechen den LED Grippen 1-6. Um die erste Gruppe "fehlerhaft" Flackern zu lassen setzt man CV62=4

Zufalls Licht

In Abteilwagen sind nicht immer alle Abteile erhellt, während der Fahrt schalten die Gäste das Licht ein und aus. Das kann die Platine simulieren indem per Zufallszeit Ausgänge abgeschaltet werden.

CV60 definiert die Zeit in Sekunden und CV59 legt die betroffenen Ausgänge fest. Beispiel: der 3. und 4. Ausgang soll im 30 Sekunden Abstand zufällig ein- oder Ausgeschaltet werden. CV60=30 definiert die Zeit und CV59=48 legt den 3. und 4. Ausgang fest.

Um nur eine LED diesem Zufallsprinzip zu unterwerfen, können die anderen beiden LEDs dieser Gruppe durch eine Drahtbrücke ersetzt werden.

Sanftes Einschalten

Das erlaubt das träge Aufglühen von Glüh-

CV57 the dimming mask defines which LEDs should be reduced. CV57=84 reduced one color, CV57=168 selects the other color. This allows moving the color from yellow to bright white in fine steps.

fluorescent tube simulation

Starting fluorescent tubes shows often a flickering at the start. The board can simulate this.

The start flickering is enabled with CV58. For all 6 groups set CV58=252. CV63 allows to define the time span for this startup procedure.

Finally the function key to turn them on must be defined. For example F2 should be used so CV36 (controls F2) is set to 252 (all LED Groups).

As soon as the F2 key is pressed all LEDs start flickering for some seconds. Then they stay on until they will be turned off.

Damaged bulb

CV62 allows the simulation of a damaged fluorescent bulb. The bits 2-7 map to the LED groups 1-6. To set the first group to a faulty bulb just set CV62=4.

Random light

In compartment coaches some compartments might not be used and there for the light is off. If passengers change the light situation changes as well. Is can be simulated with this board.

CV60 sets the time interval in seconds and CV59 defines the used LEDs. For example: output 3 and 4 should be changed randomly every 30 seconds. CV60=30 sets the time and CV59=48 defines LED group 3 and 4.

To reduce the random light to a single LED, the 2 others of this group may be disabled via a shortcut across them.

Soft start light

This allows to simulate the lazy start of bulbs

lampen. Die Steuerung erfolgt über die Lichteffekte in CV154-161. Das sanfte Einschalten erfolgt über den Wert 11. Alle betroffenen Ausgänge müssen damit programmiert werden. Um alle LEDs sanft zu starten setzen Sie CV156-161-11.

which slowly start. It is controlled via CV154-161. The soft start is done via the value 11. Each output ist controlled with a individual CV. To set a soft start for all LEDs set CV156-161=11

Stromversorgung

Die Platine muss mit Gleisspannung versorgt werden. Im Digitalbetrieb können die Anschlüsse beliebig erfolgen. Daher werden schwarze Drähte verwendet, die leichter im Wagen zu tarnen sind.

Die Stromaufnahme erfolgt am besten über den Wagen selbst. So vermeidet man das betrieblich umständliche durch Verkabeln der Wagen. Dazu eignen Stromabnehmerachsen oder Drehgestelle mit leitenden Lagerschalen. Der Fachhandel bietet auch diverse Schleifkontakte zum Nachrüsten an.

Energy pick up

The board requires track voltage for power supply. On digital layouts the 2 wires can be swapped. Therefore the board is delivered with black wired which are easier to hide in a car than colored ones.

The power pick up is best done in the specific car. This avoids the trouble-some wireing from car to car. The best pick up are pick up axles or trucks with pickup bearings. Hobby shops also offer add on pickups in various versions.

Eine einfache Selbstbaulösung ist folgende: Viele Achsen sind nur einseitig isoliert. Die Achse selbst hat ein Schienenpotential. Man wickelt mehrere Windungen blanken Draht locker um die Achse. Dadurch liegt zumindest immer ein Stück Draht an und sorgt für sicheren Kontakt. Das lockere Umwickeln ermöglicht weiterhin einen freien Lauf mit wenig Reibungsverlust.

CV Beschreibung

Die CV Anordnung folgt den NMRA Vorgaben. Im Hersteller spezifischen Bereich gibt es einige Produktdetails, die die besonderen Eigenschaften dieser Lichtplatine ausmachen.

Diese Lichtplatine kann auch von Lokmausbenutzern programmiert werden, weil nur 2-stellige CVs Verwendung finden. Für Werte >99 gibt es die Hilfs-CV53

An easy self-made solution is the following: Many axles are insulated only on one side. The axle itself has one track side connected. Use a thin bare wire and put some freewheeling windings around the axle. At list with one point the coil will touch the axle. This establishes a solid pickup, with little friction.

CV layout

The CV layout follows the NMRA standards. The vendor specific area covers the special features of this board.

This light board supports loco mouse users as well. The design uses only 2 digit CV numbers. To write values above 99 the helper CV53 allows to add values of 100 or 200.

CV	Name	Werte- bereich	Def- ault	Beschreibung
1	Adresse	1-127	3	Kurze Adresse CV29 Bit6=0 0 = Decoder Reset
7	Versionsnummer	0-255	-	SW Versionsnummer
8	Hersteller	19	19	Hersteller 19 = AMW
13	Analogmode	0-255	3	Definiert die aktivierten Funktionstasten wenn der Deco- der im Analogmodus operiert
17 18	lange Adresse	128- 10239		Lange Adressen für CV29 Bit 5=1
19	Verbundadresse	0-127	0	Decoderbasierender Lokverbund nur kurze Adressen möglich
21	Funktionen im Verbund	0-64	0	Definiert ob die Funktionstaste auf Lokadresse oder Verbundadresse reagiert Bit0=F0 Bit1=F1 0 bedeutet Lokadresse, 1 bedeutet Verbundadresse
29	Decoder Para- meter nach NMRA	0-255	2	Bit 1: 0=14 1=28 Fahrstufen wegen Lichtausgänge Bit 2: 1= Analogmodus eingeschaltet Bit 5: 0=kurze Adressen CV1 1= lange Adressen nach CV17/18 Alle anderen Bits sind unbenutzt
30	Fehler	0,2	-	Falls Überstrom erkannt wird ist CV30=2. Normalfall ist 0
33	Licht vorne F0	0-255	1	F0 - Funktionsausgang Licht vorne auf Lötpad
34	Licht hinten F0	0-255	2	F0 - Funktionsausgang Licht hinten auf Lötpad
35	F1 alle	0-255	252	Schaltet alle LEDs ein/aus
36	F2 1. Gruppe	0-255	4	1. LED Gruppe
37	F3 2. Gruppe	0-255	8	2. LED Gruppe
38	F4 3. Gruppe	0-255	2	3. LED Gruppe
39	F5 4. Gruppe	0-255	4	4. LED Gruppe
40	F6 5. Gruppe	0-255	8	5. LED Gruppe
41	F7 6. Gruppe	0-255	4	6. LED Gruppe
49	Decoder Konfig	0-255	0	Bit 5 = 1 LGB Pulsketten (über F1) Bit 7 = 1 Pulskette über F4

CV	Name	Werte- bereich	De- fault	Beschreibung
53	Lokmaus Hilfe	1, 2	0	Addiert zum nächsten Wert 100 bzw 200 für Lokmaus
54	Dimm Wert LED	0-255	20	Helligkeitseinstellung 0=dunkel, 255=hell
55	Dimm Wert Kupplung	0-255	20	Haltespannung für Kupplung. Üblicherweise sollte diese CV auf 0 verbleiben. Siehe auch CV56 und CV58
56	Kupplung ein	0-255	20	Zeit in 100ms in der 100% Spannung an die Kupplungs- ausgänge gelegt wird, beachten Sie auch CV55
57	Dimm Maske	0-255	0	Bit 0=F0 vorne Bit 4 = Gruppe 3 Bit 1=F0 hinten Bit 5 = Gruppe 4 Bit 2=Gruppe 1 Bit 6 = Gruppe 5 Bit 3=Gruppe 2 Bit 7 = Gruppe 6
58	Kupplungs- Maske Leuchtstofflam- pen Startblinken	0-255	0	Definiert die Ausgänge Bit 0=F0 vorne Bit 1 = F0 hinten Simuliert das Startflackern von Leuchtstofflampen Bit 2= Gruppe 1 Bit 5 = Gruppe 4 Bit 3= Gruppe 2 Bit 6 = Gruppe 5 Bit 4= Gruppe 3 Bit 7 = Gruppe 6
59	Zufallsmaske	0-255	0	Definiert welche Ausgänge vom Zufallsgenerator abge- schaltet werden, Häufigkeit wird in CV60 definiert. Dient zur Simulation von Passagierbewegungen in Abteilen
60	Zufallszeit	0-255	6	Abstand zwischen 2 Zufallsereignissen in 500ms
62	Maske Defekte Lampe	0-255	0	Definiert welche Ausgänge vom Zufallsgenerator abgeschaltet werden, Häufigkeit wird in CV60 definiert.
63	Start Blinkanzahl	0-255	5	Definiert die Dauer des Startblinkens der Leuchtstoffröhren Startsimulation
114	PWM Effekte	0-255	0	Helligkeitsreduktion bei Effekten (CV154-161)
115	Pulsdauer	0-255	0	Pulsdauer bei Effekten (CV154-161)
154 bis 161	Blinkeffekte für F0(v,h) F1F6 ab V40	0-11 +64 +128	0	1 blinken, 2 blinken azyklich zu Effekt1, 2 single pulse stro- be, 3 double strobe, 4 double strobe, 5 flashing headlight, 6 ditch light left, 7 ditch light right, 8 rotary beacon, 9 gyro light, 10 mars light, 11 sanft einschalten Gedimmte Helligkeit über CV114 einstellbar +64 bzw. +128 beschränkt Wirkung auf vorwärts bzw rückwärts Betrieb.

Die voreingestellten CV Werte in CV35-41 weichen vom NMRA Vorschlag ab. Die Anordnung ermöglicht das Einschalten aller LEDs über F1 und die einzelne Erreichbarkeit der LEDs über F2-F7. Die Bedeutung und Wertigkeit der CVs folgt der NMRA Norm und kann von Anwendern diesen Regeln folgend angepasst werden.

Zur Unterstützung der Berechnung des Function Mappings empfehle ich meinen Function Mapping Kalkulator auf http://www.huebsch.at/train/Software/function_46.htm

CV	Name	Values	De- fault	Description
1	Address	1-127	3	Short address CV29 Bit6=0 0 = Decoder Reset
7	Version Number	0-255	-	SW version number
8	Vendor ID	19	19	Vendor ID 19 = AMW
13	Analog Mode	0-255	3	Sets the activated function outputs if the decoder is powered with DC.
17 18	long Address	128- 10239		Long address see CV29 bit 5
19	Consist Address	0-127	0	Consist address
21	Consist Func- tions	0-64	0	Defines if function key works via consist address or decoder address. bit 0 = F0, bit 1 = F1. A value of 1 activates consist mode
29	Decoder Pa- rameter accord- ing to NMRA definition	0-255	2	Bit 1: 0=14 1=28 Speed steps (necessary for F0 outputs) Bit 2: 1= analog mode enabled Bit 5: 0=short addresses in CV1 1= long addresses in CV17/18 All other bits are unused
30	Error	0,2	-	If an overload is detected CV30=2 otherwise 0
33	Light Front F0	0-255	1	F0 - function output forward direction
34	Light Back F0	0-255	2	F0 - function output backward direction
35	F1 all groups	0-255	252	All LEDs on/off
36	F2 1. Group	0-255	4	1. LED Group
37	F3 2. Group	0-255	8	2. LED Group
38	F4 3. Group	0-255	2	3. LED Group
39	F5 4. Group	0-255	4	4. LED Group
40	F6 5. Group	0-255	8	5. LED Group
41	F7 6. Group	0-255	4	6. LED Group
49	Decoder Config	0-255	0	Bit 5 = 1 LGB pulse chain via F1 Bit 7 = 1 Pulse chain via F4

CV	Name	values	De- fault	Description
53	Loco Mouse help	1,2	0	Adds 100 or 200 to the next write operation. This allows Roco loco mouse users to write all values up to 255
54	Dimming Value	0-255	20	Dimming value 0=dark, 255=bright
55	Coupler PWM	0-255	20	Sets the power after the pulse time has expired, usually should be left at 0. See also CV58 and CV56
56	Coupler On Time	0-255	20	Time in 100ms where 100% power will be on the coupler to raise the mechanic. See also CV55
57	Dim Mask	0-255	0	Defines the dimmed outputs Bit 0 = F0 front Bit 4 = Group 3 Bit 1 = F0 rear Bit 5 = Group 4 Bit 2 = Group 1 Bit 6 = Group 5 Bit 3 = Group 2 Bit 7 = Group 6
58	Coupler Mask Fluorescent Lamp Mask	0-127	0	Defines the coupler outputs Bit 0 = F0 front Bit 1=F0 rear Simulates starting up fluorescent bulbs Bit 2 = Group 1 Bit 5 = Group 4 Bit 3 = Group 2 Bit 6 = Group 5 Bit 4 = Group 3 Bit 7 = Group 6
59	Random Mask	0-255	0	Defines the outputs should be randomly turned off. This simulates changed occupancy in cabins
60	Random Time	0-255	6	Frequency between random events (CV59) in 500ms
62	Faulty Lamp	0-255	0	Defines which output should be flickering, controlled by the random generator. Frequency is set in CV60
63	Startup Time	0-255	5	Defines fluorescent lamp startup flickering time
114	PWM effects	0-255	0	Brightness reduction for effects (CV154-161)
115	Pulse timing	0-255	0	Pulse time for effects (CV154-161)
154 to 161	Light effects for F0(v,h) F1F6 since V40	0-11 +64 +128	0	1 blinking, 2 blinking reversed to effect 1, 2 single pulse strobe, 3 double strobe, 4 double strobe, 5 flashing head- light, 6 ditch light left, 7 ditch light right, 8 rotary beacon, 9 gyro light, 10 mars light, 11 soft startup Dimmed brightness defined in CV114 +64 or +128 limits the effect on front or reverse direction

The predefined values in CV35-41 are different compared to the NMRA recommendations. This was done to allow users with basic DCC equipment to turn on all lights with F1. Usually this might be the most used configuration anyways. The logic behind the function mapping and it's bit value meaning is untouched, only the default values where changed. The user may remap the output lines as with other standard DCC decoders.

To help remapping function keys I recommend to use the function mapping calculator at http://www.huebsch.at/train/Software/function_46.htm

Sicherheitshinweise

Bitte behandeln Sie die Platine sorgfältig. Es ist kein Spielzeug für kleine Kinder. Achten Sie auf Orientierung des Pufferkondensators. Bei Falschpolung kann der Kondensator explodieren und Schäden verursachen.

Weiterführendes

Ergänzende Hinweise, Praxisbeispiele, Bilder und Videos der Digital-LED Platine finden Sie am AMW.

Am AMW befindet sich die jeweils aktuellste Ausgabe dieser Dokumentation. In der Fußzeile dieses Dokuments finden sie einen Versionshinweis.

Security Advices

Please handle this board with care. It is not a toy for small children! Check the orientation the capacitor. A reverse powered capacitor may explode and cause harm!

More information

Supplemental information, installation advices, pictures and videos about the digital-LED can be accessed via the AMW.

The AMW also carries the most recent version of this documentation. The footer line of this document indicates the document version.

AMW Ing. Arnold Hübsch Hohlweggasse 1/4 A-1030 Wien

E-Mail: office@huebsch.at http://amw.huebsch.at +43 (699) 226 77 335 Fachhändler